Concept/Topic	GPS/CCSSS
Summary for September 6, 2011	
Parameter (numerical summary of the population)	MM1D3
vs. statistic (numerical summary of the sample)	MM2D1
distinction	S-IC2
Distinguish type of data you are working with:	M6D1
categorical vs. quantitative (discrete vs.	S-ID5
continuous)	S-ID6
Appropriate graphs for representing the two types	M6D1
of data: categorical - pie chart or bar graph;	M7D1
quantitative - dotplot, stem and leaf plot, histogram,	S-ID1
boxplot, or time plot (data over time)	
Appropriate numerical summaries for	M7D1
representing two types of data: categorical -	MM2D1
counts, proportions, or percentages; quantitative -	S-ID4
mean, median, MAD, standard deviation, range,	
interquartile range	
Numerical summaries: "How much?" vs. "How	M7D1
many?"	S1-ID4
Three types of distributions: population	MM1D3
distribution, data distribution, sampling distribution	7.SP3
Describing distribution of quantitative variables:	M7D1
shape, center, spread (variability), gaps, and any	6.SP.2
outlier identification	
Five number summary of positions: min, Q1,	M7D1
median, Q3, max	MM1D3
	6.SP.5
	S-ID3
Resistant measures: median, IQR	M7D1
	MM1D3
	6.SP.5

	S-ID3
Non-resistant: mean, SD, range	M7D1
	MM1D3
	6.SP.5
	S-ID3
Expected relationship of mean to the median wrt	MM2D1
shape of the distribution: Symmetry: mean =	S-ID.2
median; Left Skew: mean < median; Right Skew:	
mean > median	
Collecting samples/surveys: role of randomness -	MM1D3
Eliminating (minimizing) bias	S-ID.3
Sample size: larger sample size reduces	MMID3
variability - thus, improving the precision of	S-ID.3
inference	
Moving from descriptive statistics to making	MM4D2
inference: Margin of Error (ME). ME allows	S-IC.1
statement about the range of plausible values for the	
population parameter. ME measures sampling	
variability you'd expect in repeated samples.	
Mathematical thinking vs. Statistical thinking	N/A
(context, variability) – distinction between	
mathematical and statistical questions	
z-score: Tells us the number of standard deviations	MM3D2
an observation falls from the mean (and the	
direction). Can be used for an type of distribution –	
shape of the distribution does not matter.	
Empirical Rule: 68% of observations within 1 SD	MM3D2
of mean; 95% within 2 SD; 99.7% within 3 SD of	
the mean – distribution is unimodal and symmetric	
(bell shaped)	
Range/6: gives an estimate of the SD (assume bell	

shape distribution)	
Box plot: percentages found within quarters of the	M7D1
boxplot. Central box contains middle 50% of the	S-ID.1
data. We can miss shape, gaps, mean, and possible	
bimodal distribution by only examining a boxplot.	
z-scores and percentiles: z-scores standardize data	MM3D2
in different units to allow comparisons of relative	
standing (how much comparison). We can also use	
percentiles to compare data in different units (how	
many comparison).	
Criterion for identifying possible outliers using z-	N/A
scores: If observation more than 2 or 3 standard	
devations from the mean, obs. classified as a	
potential outlier. [how much criterion]	
1.5*IQR Criterion: If an observation above	N/A
Q3+1.5*IQR or below Q1-1.5*IQR, then obs	
classified as a potential outlier. [how many criterion]	